3.809 \(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=83 \[ \frac {2 A b^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}} \]

[Out]

2*A*b^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)
/d/(b*cos(d*x+c))^(1/2)+2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(
1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {16, 2748, 2642, 2641, 2640, 2639} \[ \frac {2 A b^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

(2*b*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]) + (2*A*b^2*Sqrt[Cos[c + d*x]]*El
lipticF[(c + d*x)/2, 2])/(d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps

\begin {align*} \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx &=b^2 \int \frac {A+B \cos (c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\\ &=\left (A b^2\right ) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+(b B) \int \sqrt {b \cos (c+d x)} \, dx\\ &=\frac {\left (A b^2 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{\sqrt {b \cos (c+d x)}}+\frac {\left (b B \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {2 b B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 A b^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 57, normalized size = 0.69 \[ \frac {2 b^2 \sqrt {\cos (c+d x)} \left (A F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{d \sqrt {b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

(2*b^2*Sqrt[Cos[c + d*x]]*(B*EllipticE[(c + d*x)/2, 2] + A*EllipticF[(c + d*x)/2, 2]))/(d*Sqrt[b*Cos[c + d*x]]
)

________________________________________________________________________________________

fricas [F]  time = 2.30, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B b \cos \left (d x + c\right )^{2} + A b \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

integral((B*b*cos(d*x + c)^2 + A*b*cos(d*x + c))*sqrt(b*cos(d*x + c))*sec(d*x + c)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.85, size = 163, normalized size = 1.96 \[ -\frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x)

[Out]

-2*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin
(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^2,x)

[Out]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________